社区编辑申请
注册/登录
从PyTorch到Mxnet ,对比7大Python深度学习框架
开发 开发工具 深度学习
本文是对这 7 大 Python 深度学习框架的描述以及优缺点的介绍,而且也为每个框架的使用推荐了一些资源。

Python

最近我无意间在「Best Python library for neural networks」话题下发现了一个我以前的数据科学栈交换(Data Science Stack Exchange)的答案,并且 Python 深度学习生态系统在过去两年半中的演变打击到了我。我在 2014 年 7 月推荐的库,pylearn2,已经不再被积极地开发或者维护,大量的深度学习库开始接替它的位置。这些库每一个都各有千秋。我们已经在 indico 的产品或者开发中使用了以下列表中的大部分的技术,但是对于剩下一些我们没有使用的,我将会借鉴他人的经验来帮助给出 2017 年 Python 深度学习生态系统的清晰的、详尽的理解。

确切地说,我们将会关注:

  • Theano
  • Lasagne
  • Blocks
  • TensorFlow
  • Keras
  • MXNet
  • PyTorch

下面是对这 7 大 Python 深度学习框架的描述以及优缺点的介绍,而且也为每个框架的使用推荐了一些资源,但因微信不支持外网链接,读者们请点击阅读原网址查看资源。

Theano

链接:https://github.com/Theano/Theano

描述:Theano 是一个 Python 库,允许你定义、优化并且有效地评估涉及到多维数组的数学表达式。它与 GPUs 一起工作并且在符号微分方面表现优秀。

文档:http://deeplearning.net/software/theano/

概述:Theano 是数值计算的主力,它支持了许多我们列表当中的其他的深度学习框架。Theano 由 Frédéric Bastien 创建,这是蒙特利尔大学机器学习研究所(MILA)背后的一个非常优秀的研究团队。它的 API 水平较低,并且为了写出效率高的 Theano,你需要对隐藏在其他框架幕后的算法相当的熟悉。如果你有着丰富的学术机器学习知识,正在寻找你的模型的精细的控制方法,或者想要实现一个新奇的或者不同寻常的模型,Theano 是你的***库。总而言之,为了灵活性,Theano 牺牲了易用性。

优点:

  • 灵活
  • 正确使用时的高性能

缺点:

  • 较高的学习难度
  • 低水平的 API
  • 编译复杂的符号图可能很慢

Lasagne

链接:https://github.com/Lasagne/Lasagne

描述:在 Theano 上建立和训练神经网络的轻量级库

文档:http://lasagne.readthedocs.org/

概述:因为 Theano 致力于成为符号数学中***且***的库,Lasagne 提供了在 Theano 顶部的抽象,这使得它更适合于深度学习。它主要由当前 DeepMind 研究科学家 Sander Dieleman 编写并维护。Lasagne 并非是根据符号变量之间的函数关系来指定网络模型,而是允许用户在层级思考,为用户提供了例如「Conv2DLayer」和「DropoutLayer」的构建块。Lasagne 在牺牲了很少的灵活性的同时,提供了丰富的公共组件来帮助图层定义、图层初始化、模型正则化、模型监控和模型训练。

优点:

  • 仍旧非常灵活
  • 比 Theano 更高级的抽象
  • 文档和代码中包含了各种 Pasta Puns

缺点:

  • 社区小

Blocks

链接:https://github.com/mila-udem/blocks

描述:用于构建和训练神经网络的 Theano 框架

文档:http://blocks.readthedocs.io/en/latest/

概述:与 Lasagne 类似,Blocks 是在 Theano 顶部添加一个抽象层使深度学习模型比编写原始的 Theano 更清晰、更简单、定义更加标准化。它是由蒙特利尔大学机器学习研究所(MILA)编写,其中一些人为搭建 Theano 和***个神经网络定义的高级接口(已经淘汰的 PyLearn2)贡献了自己的一份力量。比起 Lasagne,Blocks 灵活一点,代价是入门台阶较高,想要高效的使用它有不小的难度。除此之外,Blocks 对递归神经网络架构(recurrent neural network architectures)有很好的支持,所以如果你有兴趣探索这种类型的模型,它值得一看。除了 TensorFlow,对于许多我们已经部署在 indico 产品中的 API,Blocks 是其***库。

优点:

  • 仍旧非常灵活
  • 比 Theano 更高级的抽象
  • 易于测试

缺点:

  • 较高的学习难度
  • 更小的社区

TensorFlow

链接:https://github.com/tensorflow/tensorflow

描述:用于数值计算的使用数据流图的开源软件库

文档:https://www.tensorflow.org/api_docs/python/

概述:TensorFlow 是较低级别的符号库(比如 Theano)和较高级别的网络规范库(比如 Blocks 和 Lasagne)的混合。即使它是 Python 深度学习库集合的***成员,在 Google Brain 团队支持下,它可能已经是***的活跃社区了。它支持在多 GPUs 上运行深度学习模型,为高效的数据流水线提供使用程序,并具有用于模型的检查,可视化和序列化的内置模块。最近,TensorFlow 团队决定支持 Keras(我们列表中下一个深度学习库)。虽然 TensorFlow 有着自己的缺点,但是社区似乎同意这一决定,社区的庞大规模和项目背后巨大的动力意味着学习 TensorFlow 是一次安全的赌注。因此,TensorFlow 是我们今天在 indico 选择的深度学习库。

优点:

  • 由软件巨头 Google 支持
  • 非常大的社区
  • 低级和高级接口网络训练
  • 比基于 Theano 配置更快的模型编译
  • 完全地多 GPU 支持

缺点:

  • 虽然 Tensorflow 正在追赶,但是最初在许多基准上比基于 Theano 的慢。
  • RNN 支持仍不如 Theano

Keras

链接:https://github.com/fchollet/keras

描述:Python 的深度学习库。支持 Convnets、递归神经网络等。在 Theano 或者 TensorFlow 上运行。

文档:https://keras.io/

概述:Keras 也许是水平***,对用户最友好的库了。由 Francis Chollet(Google Brain 团队中的另一个成员)编写和维护。它允许用户选择其所构建的模型是在 Theano 上或是在 TensorFlow 上的符号图上执行。Keras 的用户界面受启发于 Torch,所以如果你以前有过使用 Lua 语言的机器学习经验,Keras 绝对值得一看。由于部分非常优秀的文档和其相对易用性,Keras 的社区非常大并且非常活跃。最近,TensorFlow 团队宣布计划与 Keras 一起支持内置,所以很快 Keras 将是 TensorFlow 项目的一个分组。

优点:

  • 可供选择的 Theano 或者 TensorFlow 后端
  • 直观、高级别的端口
  • 更易学习

缺点:

  • 不太灵活,比其他选择更规范

MXNet

链接:https://github.com/dmlc/mxnet

描述:MXNet 是一个旨在提高效率和灵活性的深度学习框架。

文档:http://mxnet.io/api/python/index.html#python-api-reference

概述:MXNet 是亚马逊(Amazon)选择的深度学习库,并且也许是***秀的库。它拥有类似于 Theano 和 TensorFlow 的数据流图,为多 GPU 配置提供了良好的配置,有着类似于 Lasagne 和 Blocks 更高级别的模型构建块,并且可以在你可以想象的任何硬件上运行(包括手机)。对 Python 的支持只是其冰山一角—MXNet 同样提供了对 R、Julia、C++、Scala、Matlab,和 Javascript 的接口。如果你正在寻找***的性能,选择 MXNet 吧,但是你必须愿意处理与之相对的一些 MXNet 的怪癖。

优点:

  • 速度的标杆
  • 非常灵活

缺点:

  • 最小的社区
  • 比 Theano 更困难的学习难度

PyTorch

链接:https://github.com/pytorch/pytorch

描述:Python 中的张量(Tensors)和动态神经网络,有着强大的 GPU 加速。

文档:http://pytorch.org/docs/

概述:刚刚放出一段时间,PyTorch 就已经是我们 Python 深度学习框架列表中的一个新的成员了。它是从 Lua 的 Torch 库到 Python 的松散端口,由于它由 Facebook 的 人工智能研究团队(Artificial Intelligence Research team (FAIR))支持且因为它用于处理动态计算图(Theano,TensorFlow 或者其他衍生品没有的特性,编译者注:现在 TensorFlow 好像支持动态计算图),它变得非常的有名。PyTorch 在 Python 深度学习生态系统将扮演怎样的角色还不得而知,但所有的迹象都表明,PyTorch 是我们列表中其他框架的一个非常棒的选择。

优点:

  • 来自 Facebook 组织的支持
  • 完全地对动态图的支持
  • 高级和低级 API 的混合

缺点:

  • 比其他选择,PyTorch 还不太成熟(用他们自己的话说—「我们正处于早期测试版本。期待一些冒险」)
  • 除了官方文档以外,只有有限的参考文献/资源

原文:http://www.kdnuggets.com/2017/02/python-deep-learning-frameworks-overview.html

【本文是51CTO专栏机构机器之心的原创译文,微信公众号“机器之心( id: almosthuman2014)”】

 

戳这里,看该作者更多好文

责任编辑:赵宁宁 来源: 51CTO专栏
相关推荐

2019-09-01 19:19:04

2021-03-18 08:59:14

框架pytorchtensorflow

2019-03-06 09:55:54

Python 开发编程语言

2017-03-01 09:05:27

PyTorchPython框架

2021-11-05 12:59:51

2020-08-28 17:54:31

深度学习框架

2020-07-14 14:35:27

2021-03-07 09:05:45

Pytorch机器学习神经网络

2020-02-13 10:05:24

开源技术 趋势

2017-09-18 17:34:53

2021-05-12 14:40:32

模型人工智能 PyTorch

2018-10-13 09:02:25

2021-08-12 16:06:41

2020-06-23 08:11:40

PyTorch模型神经网络

2017-08-16 10:12:10

CNN网络数据

同话题下的热门内容

分布式锁工具:RedissonNuclei 进阶—深入理解 Workflows、Matchers 和 ExtractorsPython包管理工具之 PDM面试官:CyclicBarrier有了解过吗?聊聊免费好用的编程工具Web UI 自动化时,通过 AutoIT 的解决 Windows 控件GitHub 添加工具以简化软件开发管理用 Antlr 重构脚本解释器

编辑推荐

终于有人把Elasticsearch原理讲透了!花了一个星期,我终于把RPC框架整明白了!这可能是把ZooKeeper概念讲的最清楚的一篇文章论如何下载一个在线的m3u8文件到本地成为一个mp4!拜托!面试不要再问我Spring Cloud底层原理
我收藏的内容
点赞
收藏

AISummit人工智能大会