中国领先的IT技术网站
|
|

美团是如何通过优化搜索排序提升转化效果的

和传统网页搜索问题相比,美团的搜索排序有自身的特点——90%的交易发生在移动端。一方面,这对排序的个性化提出了更高的要求;另一方面,我们由此积累了用户在客户端上丰富准确的行为,经分析获得用户的地理位置、品类和价格等偏好,进而指导个性化排序。

作者:来源:美团点评技术团队|2016-01-29 10:39

开发者大赛路演 | 12月16日,技术创新,北京不见不散


美团的愿景是连接消费者和商家,而搜索在其中起着非常重要的作用。随着业务的发展,美团的商家和团购数正在飞速增长。这一背景下,搜索排序的重要性显得更加突出:排序的优化能帮助用户更便捷地找到满足其需求的商家和团购,改进用户体验,提升转化效果。

和传统网页搜索问题相比,美团的搜索排序有自身的特点——90%的交易发生在移动端。一方面,这对排序的个性化提出了更高的要求,例如在“火锅”查询下,北京五道口的火锅店A,对在五道口的用户U1来说是好的结果,对在望京的用户U2来讲不一定是好的结果;另一方面,我们由此积累了用户在客户端上丰富准确的行为,经分析获得用户的地理位置、品类和价格等偏好,进而指导个性化排序。

针对美团的O2O业务特点,我们实现了一套搜索排序技术方案,相比规则排序有百分之几十的提升。基于这一方案,我们又抽象了一套通用的O2O排序解决方案,只需1-2天就可以快速地部署到其他产品和子行业中,目前在热词、Suggestion、酒店、KTV等多个产品和子行业中应用。

我们将按线上和线下两部分分别介绍这一通用O2O排序解决方案,本文是线上篇,主要介绍在线服务框架、特征加载、在线预估等模块,下篇将会着重介绍离线流程。

排序系统

为了快速有效的进行搜索算法的迭代,排序系统设计上支持灵活的A/B测试,满足准确效果追踪的需求。

搜索排序系统

美团搜索排序系统如上图所示,主要包括离线数据处理、线上服务和在线数据处理三个模块。

离线数据处理

HDFS/Hive上存储了搜索展示、点击、下单和支付等日志。离线数据流程按天调度多个Map Reduce任务分析日志,相关任务包括:

  • 离线特征挖掘

产出Deal(团购单)/POI(商家)、用户和Query等维度的特征供排序模型使用。

  • 数据清洗标注 & 模型训练

数据清洗去掉爬虫、作弊等引入的脏数据;清洗完的数据经过标注后用作模型训练。

  • 效果报表生成

统计生成算法效果指标,指导排序改进。

  • 特征监控

特征作为排序模型的输入是排序系统的基础。特征的错误异常变动会直接影响排序的效果。特征监控主要监控特征覆盖率和取值分布,帮我们及时发现相关问题。

在线数据处理

和离线流程相对应,在线流程通过Storm/Spark Streaming等工具对实时日志流进行分析处理,产出实时特征、实时报表和监控数据,更新在线排序模型。

在线服务(Rank Service)

Rank Service接到搜索请求后,会调用召回服务获取候选POI/Deal集合,根据A/B测试配置为用户分配排序策略/模型,应用策略/模型对候选集合进行排序。

排序内部流程

下图是Rank Service内部的排序流程。

  • L1 粗粒度排序(快速)

使用较少的特征、简单的模型或规则对候选集进行粗粒度排序。

  • L2 细粒度排序(较慢)

对L1排序结果的前N个进行细粒度排序。这一层会从特征库加载特征(通过FeatureLoader),应用模型(A/B测试配置分配)进行排序。

  • L3 业务规则干预

在L2排序的基础上,应用业务规则/人工干预对排序进行适当调整。

Rank Service会将展示日志记录到日志收集系统,供在线/离线处理。

A/B测试

A/B测试的流量切分是在Rank Server端完成的。我们根据UUID(用户标识)将流量切分为多个桶(Bucket),每个桶对应一种排序策略,桶内流量将使用相应的策略进行排序。使用UUID进行流量切分,是为了保证用户体验的一致性。

bucket testing

下面是A/B测试配置的一个简单示例。

  1.     "search": { 
  2.         "NumberOfBuckets": 100, 
  3.         "DefaultStrategy""Base"
  4.         "Segments": [ 
  5.             { 
  6.                 "BeginBucket": 0, 
  7.                 "EndBucket": 24, 
  8.                 "WhiteList": [123], 
  9.                 "Strategy""Algo-1" 
  10.             }, 
  11.             { 
  12.                 "BeginBucket": 25, 
  13.                 "EndBucket": 49, 
  14.                 "WhiteList": [], 
  15.                 "Strategy""Algo-2" 
  16.             } 
  17.         ] 
  18.     } 

对于不合法的UUID,每次请求会随机分配一个桶,以保证效果对比不受影响。白名单(White List)机制能保证配置用户使用给定的策略,以辅助相关的测试。

除了A/B测试之外,我们还应用了Interleaving[7]方法,用于比较两种排序算法。相较于A/B测试,Interleaving方法对排序算法更灵敏[9],能通过更少的样本来比较两种排序算法之间的优劣。Interleaving方法使用较小流量帮助我们快速淘汰较差算法,提高策略迭代效率。

特征加载

搜索排序服务涉及多种类型的特征,特征获取和计算是Rank Service响应速度的瓶颈。我们设计了FeatureLoader模块,根据特征依赖关系,并行地获取和计算特征,有效地减少了特征加载时间。实际业务中,并行特征加载平均响应时间比串行特征加载快约20毫秒。

特征类型

FeatureLoader的实现中我们使用了Akka[8]。如上图所示,特征获取和计算的被抽象和封装为了若干个Akka actor,由Akka调度、并行执行。

特征和模型

美团从2013年9月开始在搜索排序上应用机器学习方法(Learning to Rank[1]),并且取得很大的收益。这得益于准确的数据标注:用户的点击下单支付等行为能有效地反映其偏好。通过在特征挖掘和模型优化两方面的工作,我们不断地优化搜索排序。下面将介绍我们在特征使用、数据标注、排序算法、Position Bias处理和冷启动问题缓解等方面的工作。

特征

特征类型

从美团业务出发,特征选取着眼于用户、Query、Deal/POI和搜索上下文四个维度。

  • 用户维度

包括挖掘得到的品类偏好、消费水平和地理位置等。

  • Query维度

包括Query长度、历史点击率、转化率和类型(商家词/品类词/地标词)等。

  • Deal/POI维度

包括Deal/POI销量、价格、评价、折扣率、品类和历史转化率等。

  • 上下文维度

包括时间、搜索入口等。

此外,有的特征来自于几个维度之间的相互关系:用户对Deal/POI的点击和下单等行为、用户与POI的距离等是决定排序的重要因素;Query和Deal/POI的文本相关性和语义相关性是模型的关键特征。

模型

Learning to Rank应用中,我们主要采用了Pointwise方法。采用用户的点击、下单和支付等行为来进行正样本的标注。从统计上看,点击、下单和支付等行为分别对应了该样本对用户需求的不同的匹配程度,因此对应的样本会被当做正样本,且赋予不断增大的权重。

线上运行着多种不同类型模型,主要包括:

  • Gradient boosting decision/regression tree(GBDT/GBRT)[2]

GBDT是LTR中应用较多的非线性模型。我们开发了基于Spark的GBDT工具,树拟合梯度的时候运用了并行方法,缩短训练时间。GBDT的树被设计为三叉树,作为一种处理特征缺失的方法。

三叉树

选择不同的损失函数,boosting tree方法可以处理回归问题和分类问题。应用中,我们选用了效果更好的logistic likelihood loss,将问题建模为二分类问题。

  • Logistic Regression(LR)

参考Facebook的paper[3],我们利用GBDT进行部分LR特征的构建。用FTRL[4]算法来在线训练LR模型。

对模型的评估分为离线和线上两部分。离线部分我们通过AUC(Area Under the ROC Curve)和MAP(Mean Average Precision)来评价模型,线上则通过A/B测试来检验模型的实际效果,两项手段支撑着算法不断的迭代优化。

冷启动

在我们的搜索排序系统中,冷启动问题[6] 表现为当新的商家、新的团购单录入或新的用户使用美团时,我们没有足够的数据用来推测用户对产品的喜好。商家冷启动是主要问题,我们通过两方面手段来进行缓解。一方面,在模型中引入了文本相关性、品类相似度、距离和品类属性等特征,确保在没有足够展示和反馈的前提下能较为准确地预测;另一方面,我们引入了 Explore&Exploit机制,对新商家和团单给予适度的曝光机会,以收集反馈数据并改善预测。

Position Bias

在手机端,搜索结果的展现形式是列表页,结果的展示位置会对用户行为产生很大的影响。在特征挖掘和训练数据标注当中,我们考虑了展示位置因素引入的偏差。例如CTR(click-through-rate)的统计中,我们基于Examination Model[5],去除展示位置带来的影响。

总结

本文主要介绍了美团搜索排序系统线上部分的结构、算法和主要模块。在后续文章里,我们会着重介绍排序系统离线部分的工作。

一个完善的线上线下系统是排序优化得以持续进行的基础。基于业务对数据和模型上的不断挖掘是排序持续改善的动力。我们仍在探索。

参考文献

Learning To Rank. Wikipedia

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., ... & Candela, J. Q. (2014, August). Practical lessons from predicting clicks on ads at facebook. In Proceedings of 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1-9). ACM.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., ... & Kubica, J. (2013, August). Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1222-1230). ACM.

Craswell, N., Zoeter, O., Taylor, M., & Ramsey, B. (2008, February). An experimental comparison of click position-bias models. In Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 87-94). ACM.

Cold Start. Wikipedia

Chapelle, O., Joachims, T., Radlinski, F., & Yue, Y. (2012). Large-scale validation and analysis of interleaved search evaluation. ACM Transactions on Information Systems (TOIS), 30(1), 6.

Akka: http://akka.io

Radlinski, F., & Craswell, N. (2010, July). Comparing the sensitivity of information retrieval metrics. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 667-674). ACM.

【编辑推荐】

  1. 排序之简单选择排序
  2. 京东11.11:商品搜索系统架构设计解密
  3. 前阿里产品经理,揭露美团不愿走近阿里的秘密
  4. Java ArrayList 的不同排序方法
  5. 程序员应该掌握的10个搜索技巧
【责任编辑:Ophira TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

热门职位+更多

读 书 +更多

网管员必读——超级网管经验谈

本书是一本以示例形式直接面向应用的网络管理图书。书中以大量示例和大量实用网络管理与故障排除经验介绍了当前网络管理工作的各主要方面。...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊