中国领先的IT技术网站
|
|

相比Hadoop,如何看待Spark技术?

之前看Spark的评价,几乎一致表示,Spark是小数据集上处理复杂迭代的交互系统,并不擅长大数据集,也没有稳定性。但是最近的风评已经变 化,尤其是14年10月他们完成了Peta sort的实验,这标志着Spark越来越接近替代Hadoop MapReduce了。

作者:来源:36大数据|2015-04-28 14:55

沙龙活动 | 去哪儿、陌陌、ThoughtWorks在自动化运维中的实践!10.28不见不散!


之前看Spark的评价,几乎一致表示,Spark是小数据集上处理复杂迭代的交互系统,并不擅长大数据集,也没有稳定性。但是最近的风评已经变 化,尤其是14年10月他们完成了Peta sort的实验,这标志着Spark越来越接近替代Hadoop MapReduce了。

相比Hadoop,如何看待Spark技术?

Sort和Shuffle是MapReduce上最核心的操作之一,比如上千个Mapper之后,按照Key将数据集分发到对应的Reducer上,要走一个复杂的过程,要平衡各种因素。Spark能处理Peta sort的话,本质上已经没有什么能阻止它处理Peta级别的数据了。这差不多远超大多数公司单次Job所需要处理的数据上限了。

回到本题,来说说Hadoop和Spark。Hadoop包括Yarn和HDFS以及MapReduce,说Spark代替Hadoop应该说是代替MpReduce

上面这些问题,算是每个号称下一代平台都尝试解决的。

现在号称次世代平台现在做的相对有前景的是Hortonworks的Tez和Databricks的Spark。他们都尝试解决了上面说的那些问 题。Tez和Spark都可以很自由地描述一个Job里执行流(所谓DAG,有向无环图)。他们相对现在的MapReduce模型来说,极大的提升了对各 种复杂处理的直接支持,不需要再绞尽脑汁“挖掘”MR模型的潜力。=

相比Tez,Spark加入了更多内存Cache操作,但据了解它也是可以不Cache直接处理的,只是效率就会下降

再说Programming Interface,Tez的Interface更像MapReduce,但是允许你定义各种Edge来连接不同逻辑节点。Spark则利用了 Functional Programming的理念,API十分简洁,相比MR和Tez简单到令人发指。我不清楚Spark如果要表现复杂的DAG会不会也变得很麻烦。

处理大规模数据而言,他们都需要更多proven cases。至少Hadoop MapReduce是被证明可行的。

作为Data Pipeline引擎来说,MapReduce每个步骤都会存盘,而Spark和Tez可以直接网络发送到下一个步骤,速度上是相差很多的,但是存盘的好 处是允许继续在失败的数据上继续跑,所以直观上说MapReduce作为pipeline引擎更稳健。但理论上来说,如果选择在每个完成的小步骤上加 CheckPoint,那Tez和Spark完全能和现在的MapReduce达到一样的稳健。

总结来说,即便现在不成熟,但是并没有什么阻碍他们代替现有的MapReduce Batch Process。

对Tez而言,似乎商业上宣传不如Spark成功。Databricks头顶Berkley的光环,商业宣传又十分老道,阵营增长极快。光就系统设 计理念,没有太大的优劣,但是商业上可能会拉开差距。Cloudera也加入了Spark阵营,以及很多其他大小公司,可以预见的是,Spark会成熟的 很快,相比Tez。

但Tez对于Hortonworks来说是赢取白富美的关键,相信为了幸福他们也必须努力打磨推广Tez。

所以就算现在各家试用会有种种问题,但是毕竟现在也就出现了2个看起来有戏的“次世代”平台,那慢慢试用,不断观望,逐步替换,会是大多数公司的策略。

【编辑推荐】

  1. 2015年Hadoop为代表的大数据趋势
  2. 大数据处理一定需要Hadoop吗?
  3. 不只是Hadoop:大数据技术的未来道路
  4. Hadoop之后:大数据的未来
  5. 后Hadoop时代的大数据架构
【责任编辑:wangxueyan TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢

热门职位+更多

读 书 +更多

数据库加密——最后的防线

本书是关于如何使用已有的密码技术和算法对数据库中存储的信息进行保护的书,书中所关注的内容主要是如何设计、建立(或者挑选、集成)一套...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊
× Python最火的编程语言