中国领先的IT技术网站
|
|

不只是Hadoop:大数据技术的未来道路(1)

以Spark为代表的大数据技术当下可谓风靡一时,但其未来又将走向何方?这个问题的答案说起来有些复杂。

作者:核子可乐译来源:51CTO|2015-03-31 09:28

开发者大赛路演 | 12月16日,技术创新,北京不见不散


在实时数据的世界当中,我们为什么还要执着于Hadoop这一片森林?

不只是Hadoop:大数据技术的未来道路

作为一套以批量处理为主要诉求的架构方案,Hadoop仍然堪称大数据技术领域的荣耀长子。然而根据451研究集团的调查数据显示,其实际普及效果仍然不及显赫的声誉。

那些已经率先部署了Hadoop解决方案的企业可能希望稍稍放慢自己的前进脚步。伴随着Apache Spark以及其它一系列技术方案的出台(包括Storm、Kafka等等),我们似乎与Hadoop的批量处理思路渐行渐远、转而踏上了一条真正通往实 时性未来的发展道路。

批量并非

Cloudera公司的Doug Cutting是一位极为睿智的技术人员,同时也是一位高产的开源开发者。Hadoop、Lucene以及众多其它大数据事务领域的根本性工具都有他的参与。

尽管Cutting坦言实时流技术的重要性毋庸置疑,但他并不在乎Hadoop这一主要面向批量处理任务的方案,并在与我们的采访邮件当中指出:

这并不是说Hadoop的架构设计不应该针对批量处理,因为批量处理确实非常重要。事实上,批量处理、特别是 MapReduce下的批量处理可谓最理想的起步方案,因为其相对容易实现而且具有重要的实际价值。在Hadoop诞生之前,我们根本没办法利用开源软件 在商用硬件基础上存储并处理PB级别的数据。Hadoop的MapReduce帮助技术人员在资源容量领域迈进了重要的一步。

我们很难准确衡量大数据的商品化发展趋势对于整个世界的运作到底起到了怎样重要的作用。在Hadoop诞生之前面,我们面临着无数存储与分析容量方面的难题。在这种情况下,Hadoop让我们以可承受的使用成本拥有了这种关键性能力。

总体而言,Hadoop是大数据民主化进程——或者说“走入寻常企业家”的重要前提。

点赞 0

分享:
大家都在看
猜你喜欢

热门职位+更多

读 书 +更多

网管员必读—网络应用(第2版)

本书虽然是《网管员必读—网络应用》的改版,但它绝不是简单的修改,而是完完全全的重写,内容更实用、更专业。全书共9章,13个大小方案,...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊